

Development of the HSPF Precipitation-Runoff model

"To enable users to better manage water resources by providing a tool for analyzing effects on streamflow of various land and water use practices"

"Our consultants think [the USGS study] is dead on arrival" Boston Globe 8/1/1999 by Coco McCabe

SUBBASINS, WITHDRAWALS, and MODEL REACHES

Model Requirements Components of the Water Budget

- Hydrologic response to land use changes
- Ground-water withdrawals
- Surface-water withdrawals
- Areas on septic systems
- Streamflow dynamics of different water management strategies under long-term meterologic conditions

Conceptual Schematic of HSPF

Streamflow Depletion STRMDEPL -

Ground water discharges to stream

Captured recharge

Well intercepts ground water that would have discharged to the stream

Induced infiltration

Well intercepts ground water and induces infiltration from the stream

Low recharge

Well intercepts ground water, but also takes water from storage to satisfy demands

Wenham well

DEP No 3119-000-05G & 3119000-06G 300 & 720 feet from stream, respectively

Flow Duration-Scenarios 1-3

1989-93 Calibration period

Hydrographs - Scenarios 1-3

1989-93 Calibration period, South Middleton

Log-Pearson Type-III 7-Day Low-Flow

Long-term Simulations (1961-95): Scenarios 4-6

What was learned?

- Difference between low-flows with and without ground-water withdrawals is about an order of magnitude different
- Surface-water withdrawals have little effect on low flows because of the water-use permit restrictions currently in place

Documented in USGS report:

A Precipitation-Runoff Model for the Analysis of the Effects of Water Withdrawals on Streamflow, Ipswich River Basin, Massachusetts

USGS Water Resources Investigation Report 00-4029

Average Annual Water Budget Components 1989-93

Hydrological Response Units USGS

Mean Annual Water Budgets - South Middleton

South Middleton Wet Month – April 1993

South Middleton Dry Month – August 1993

Components of the Annual Water Budget 1989-93

South Middleton

Ipswich

Monthly Water Budget Components

0.269 inches

0.419 inches

0.4 cfs = 0.009 cfsm

Dry month – July 1993 Precipitation - 1.64 inches

Water Management Alternatives

- No Seasonal withdrawals May 1 to October 31
- Reduce seasonal withdrawals by 50%
- Reduce seasonal withdrawals by 20%
- Stopping withdrawals below flow threshold
- Return wastewater at 4 sites at 1.1 Mgal/d
- Return wastewater at 4 sites at 1.7 Mgal/d
- Return wastewater at 1 site at 1.5 Mgal/d
- Effects of sewering
- Reduced seasonal withdrawals and sewering
- Reduced seasonal withdrawals and 2.6 Mgal/d return flow

Water-supply Management Simulations

Streamflow depletion rates

science for a changing world

FLOW DURATION - RCHRES 8

Water supply simulations

PERCENT CHANCE DISCHARGE EXCEEDED

FLOW DURATION - RCHRES 8

Wastewater management simulations

PERCENT CHANCE DISCHARGE EXCEEDED

FLOW DURATION - RCHRES 8

Combined water supply and wastewater management

PERCENT CHANCE DISCHARGE EXCEEDED

7-Day Low-Flow Frequency- RCHRES 8 Water supply simulations

7-Day Low-Flow Frequency-RCHRES 8

Wastewater simulations

7-Day Low-Flow Frequency-RCHRES 8

Combined water supply and wastewater simulations

What was Learned?

- Returning wastewater and reducing seasonal withdrawals can restore low flows to "natural" levels or better.
- Reducing seasonal withdrawals alone have only a modest benefit to low-flow restoration

Summarized in USGS report

Effects of Water-Management Alternatives on Streamflow in the Ipswich River Basin, Massachusetts

USGS Open-File Report 01-483

Firm-Yield of Surface-Water Supplies using the Ipswich River

Estimate the maximum withdrawal rate that can be sustained during a severe drought (Safe Yield)

OBJECTIVES:

- Determine the firm yield of three surfacewater supply systems under
 - A. Permitted withdrawal restrictions and
 - B. Restrictions recommended by Ipswich River Fisheries Restoration Task Group
- Evaluate reservoir storage of the systems under these withdrawal restrictions and recent water demands

Permitted Withdrawals

December 1 and May 31

Lynn—

Discharge at South Middleton > 10 Mgal/d (15 ft³/s)
Annual limit 1,076 Mgal from Ipswich River (956 Mgal permitted + 120 Mgal supplemental)
and 3,259 Mgal from the Saugus River
Saugus River- No minimum streamflow requirements

Peabody—

Discharge at South Middleton > 15 Mgal/d (23 ft³/s) Annual limit 1,500 Mgal

Salem-Beverly—

Discharge at Ipswich > 28 Mgal/d (43 ft³/s) Annual limit 4,128 Mgal

Peabody – permitted withdrawals

Hypothetical Withdrawal Restrictions

Recommended streamflow requirements by Ipswich River Fisheries Task Group

Time of year	Flow (cfsm)	Flow required at intake (ft ³ /s)			
		Lynn	Peabody	Salem-Beverly	
Drainage area		43.8 mi ²	45.6 mi ²	100 mi ²	
Jun-Oct* * Withdraw	0.49 als not allowed	21	22	49	
Nov-Feb	1.0	44	46	100	
Mar-Apr	2.5	110	115	250	
May	1.5	66	69	150	

Lynn withdrawals from the Saugus River also simulated using Instream Flow Incremental Methodology (IFIM) study streamflow requirements; cfsm- 0.29 Jun-Sep, 0.57 Oct-Feb, 1.14 Mar-Apr, 0.95 May

Peabody – hypothetical restrictions

reservoir storage under 1998-2000 withdrawals (average 10.6 Mgal/d)

Lynn Supply System –

reservoir storage under 1998-2000 withdrawals (average 10.6 Mgal/d)

Min, 67 % of capacity

PERCENT OF TIME THE INDICATED DAILY
RESERVOIR STORAGE WAS EQUALLED OR EXCEEDED

Peabody Supply System –

reservoir storage under 1998-2000 withdrawals (average 5.9 Mgal/d)

PERCENT OF TIME THE INDICATED DAILY RESERVOIR STORAGE WAS EQUALLED OR EXCEEDED

Salem-Beverly Supply System –

reservoir storage under 1998-2000 withdrawals (average 5.9 Mgal/d)

Permitted withdrawals

Min. 31 % of capacity

PERCENT OF TIME THE INDICATED DAILY
RESERVOIR STORAGE WAS EQUALLED OR EXCEEDED

Lynn Supply System –

Firm-Yield Withdrawal

ANNUAL PRECIPITATION, IN INCHES

Firm-Yield Estimates

Supplier	Average 1998-2000 demands Mgal/d	Permitted		Hypothetical	
		Firm yield Mgal/d	Percent change from 1998-00	Firm yield Mgal/d	Percent change From 1998-00
Lynn	10.6	11.4	8.0	6.02	-43
SRIFIM				7.31	-31
Peabody	5.88	3.70	-37	1.94	-67
Salem- Beverly	10.1	12.2	21	7.69	-24
Develly	10.1	12.2	- 21	7.00	-2-
Total	26.6	27.3	3.0	15.6	-41

What was Learned?

- Peabody was unable to meet demands under permitted restrictions; Lynn and Salem-Beverly could increase withdrawals under permitted restrictions
- Demands could not meet under hypothetical restrictions

Does the model provide a tool to better understand affects of water use on streamflow and management alternatives?

PADDEL PEDAL ^ TO THE SEA...

